The Volterra Operator

نویسنده

  • JOHN THICKSTUN
چکیده

0 |f(s)|ds ≤ |t| ≤ 1. Therefore the image of Bp is (uniformly) bounded. By Arzela-Ascoli, V : L p[0, 1]→ C[0, 1] is compact. The preceeding argument does not go through when V acts on L1[0, 1]. In this case equicontinuity fails, as is demonstrated by the following family {fn} ⊂ B1: fn(s) = n1[0,1/n](s). This suffices to preclude compactness of V ; in particular, V fn has no Cauchy subsequence. Suppose V f = λf for some λ 6= 0. By definition λf is (absolutely) continuous. We deduce that V f (and therefore f) is continuously differentiable and that f = λf ′. It follows that f(s) = ces/λ. But then 0 = λf − V f = c so V has no eigenvalues and by the spectral theorem for compact operators, σ(V ) = {0}. We now turn our attention to the operator norm of V . For now we restrict V to the square integrable domain L2. Note that C[0, 1] ⊂ L∞[0, 1] ⊂ L2[0, 1] and the identity mapping I : C[0, 1] → L2[0, 1] is a bounded linear operator. It follows that IV : L2[0, 1] → L2[0, 1] is compact and we will proceed to consider V : L2[0, 1]→ L2[0, 1]. Recall that L2[0, 1] is a Hilbert space with an inner product defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations

In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...

متن کامل

A new method for the generalized Hyers-Ulam-Rassias stability

We propose a new method, called the textit{the weighted space method}, for the study of the generalized Hyers-Ulam-Rassias stability. We use this method for a nonlinear functional equation, for Volterra and Fredholm integral operators.

متن کامل

A finite difference method for the smooth solution of linear Volterra integral equations

The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...

متن کامل

A Survey of Regularization Methods for First-Kind Volterra Equations

We survey continuous and discrete regularization methods for first-kind Volterra problems with continuous kernels. Classical regularization methods tend to destroy the non-anticipatory (or causal) nature of the original Volterra problem because such methods typically rely on computation of the Volterra adjoint operator, an anticipatory operator. In this survey we pay special attention to partic...

متن کامل

Local Operators and a Characterization of the Volterra Operator

We consider locally defined operators of the form D ◦K where D is the operator of differentiation and K maps the space of continuous functions into the space of n-times differentiable functions. As a corollary we obtain a characterization of the Volterra operator. Locally defined operators acting in the space of analytic functions are also discussed.

متن کامل

Mean Value Problems of Flett Type for a Volterra Operator

In this note we give a generalization of a mean value problem which can be viewed as a problem related to Volterra operators. This problem can be seen as a generalization of a result concerning the zeroes of a Volterra operator in the Banach space of continuous functions with null integral on a compact interval.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016